Tags: drugs | research | dna | genes

DNA Sequencing Transforming Hunt for New Drugs

Wednesday, 13 May 2015 08:10 AM

Drug manufacturers have begun amassing enormous troves of human DNA in hopes of significantly shortening the time it takes to identify new drug candidates, a move some say is transforming the development of medicines.

The efforts will help researchers identify rare genetic mutations by scanning large databases of volunteers who agree to have their DNA sequenced and to provide access to detailed medical records.

It is made possible by the dramatically lower cost of genetic sequencing - it took government-funded scientists $3 billion and 13 years to sequence the first human genome by 2003. As of last year, the cost was closer to $1,500 per genome, down from $20,000 five years ago.

Regeneron Pharmaceuticals, which signed a deal with Pennsylvania’s Geisinger Health System in January 2014 to sequence partial genomes of some 250,000 volunteers, is already claiming discoveries based on the new approach.

Company executives told Reuters they have used data from the first 35,000 volunteers to confirm the promise of 250 genes on a list of targets for drugs aimed at common medical conditions, including high levels of cholesterol and triglycerides.

Regeneron says it has also identified "several dozen" new gene targets, including a novel gene that plays a role in obesity.

Pfizer Inc, Roche Holding AG and Biogen Inc are working on similar projects that use DNA and patient health data to find new drug targets or predict the effects of drugs.

Their investments have been inspired by early successes in cancer with drugs such as Pfizer's lung cancer treatment Xalkori, which was approved in 2011 and targets mutations in tumors driving the disease.

More recently, Vertex Pharmaceuticals has changed the treatment of cystic fibrosis with Kalydeco, which targets the disease’s underlying genetic cause.

"All of a sudden, it all opened up," as companies recognize the potential for drugs targeting genetic glitches, Dr. Eric Topol, a genomics expert at the Scripps Translational Science Institute. "It's starting to really become a new preferred model for drug development."

In the past, discovering such genes was a painstaking process, often involving years of research into isolated populations.

In 1991, for example, researchers discovered a rare mutation in a gene called Angptl3 that caused very low levels of artery-clogging cholesterol and triglycerides among families in the remote Italian village of Campodimele.

It took nearly two more decades and several groups of scientists to fully understand the potential cardiovascular benefits linked to mutations in that gene.

Since last autumn, the Regeneron Genetics Center has sequenced the DNA of more than 35,000 Geisinger patients and is on track to sequence 100,000 by year end. Already, the company has identified 100 people carrying similar cholesterol-affecting mutations to those first observed in Campodimele and elsewhere.

“You no longer have to find that one rare family in Italy, because it's just in the database," said Dr. George Yancopoulos, chief scientific officer of Regeneron.

© 2017 Thomson/Reuters. All rights reserved.

   
1Like our page
2Share
Health-News
Drug manufacturers have begun amassing enormous troves of human DNA in hopes of significantly shortening the time it takes to identify new drug candidates, a move some say is transforming the development of medicines. The efforts will help researchers identify rare genetic...
drugs, research, dna, genes
476
2015-10-13
Wednesday, 13 May 2015 08:10 AM
Newsmax Inc.
 

The information presented on this website is not intended as specific medical advice and is not a substitute for professional medical treatment or diagnosis. Read Newsmax Terms and Conditions of Service.

Newsmax, Moneynews, Newsmax Health, and Independent. American. are registered trademarks of Newsmax Media, Inc. Newsmax TV, and Newsmax World are trademarks of Newsmax Media, Inc.

NEWSMAX.COM
© Newsmax Media, Inc.
All Rights Reserved